Floating Point

Introduction to Computer Systems
3rd Lecture, Sep. 8, 2015

Instructor:
Younghoon Kim
Fractional binary numbers

- What is 1011.101_2?
Fractional Binary Numbers

Representation

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number:
 \[
 \sum_{k=-j}^{i} b_k \times 2^k
 \]
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>1 7/16</td>
<td>1.0111₂</td>
</tr>
</tbody>
</table>

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111\ldots₂ are just below 1.0
 - \(1/2 + 1/4 + 1/8 + \ldots + 1/2^i + \ldots \rightarrow 1.0\)
 - Use notation \(1.0 - \varepsilon\)
Representable Numbers

- **Limitation #1**
 - Can only exactly represent numbers of the form \(x/2^k \)
 - Other rational numbers have repeating bit representations
 - **Value** | **Representation**
 - 1/3 | 0.0101010101[01]...\(_2\)
 - 1/5 | 0.001100110011[0011]...\(_2\)
 - 1/10 | 0.0001100110011[0011]...\(_2\)

- **Limitation #2**
 - Just one setting of binary point within the \(w \) bits
 - Limited range of numbers (very small values? very large?)
IEEE Floating Point

IEEE Standard 754
- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

Driven by numerical concerns
- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- **Numerical Form:**

 \[(-1)^s \ M \ 2^E \]

 - **Sign bit** \(s \) determines whether number is negative or positive
 - **Significand** \(M \) normally a fractional value in range \([1.0,2.0)\).
 - **Exponent** \(E \) weights value by power of two

- **Encoding**

 - MSB \(S \) is sign bit \(s \)
 - \(\text{exp} \) field encodes \(E \) (but is not equal to \(E \))
 - \(\text{frac} \) field encodes \(M \) (but is not equal to \(M \))
Precision options

- **Single precision: 32 bits**
 - s: 1 bit
 - exp: 8 bits
 - frac: 23 bits

- **Double precision: 64 bits**
 - s: 1 bit
 - exp: 11 bits
 - frac: 52 bits

- **Extended precision: 80 bits (Intel only)**
 - s: 1 bit
 - exp: 15 bits
 - frac: 63 or 64 bits
“Normalized” Values

- When: exp ≠ 000...0 and exp ≠ 111...1

- Exponent coded as a **biased** value: \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value of exp field
 - \(\text{Bias} = 2^{k-1} - 1 \), where \(k \) is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

- Significand coded with implied leading 1: \(M = 1.xxx...x_2 \)
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0 – \(\epsilon \))
 - Get extra leading bit for “free”

\[v = (-1)^s \, M \, 2^E \]
Normalized Encoding Example

- Value: \(\texttt{float } F = 15213.0; \)
 - \(15213_{10} = 11101101101101_2 \)
 - \(= 1.1101101101101_2 \times 2^{13} \)

- Significand
 - \(M = 1.1101101101101_2 \)
 - \(\text{frac} = 11011011011010000000000000_2 \)

- Exponent
 - \(E = 13 \)
 - \(\text{Bias} = 127 \)
 - \(\text{Exp} = 140 = 10001100_2 \)

- Result:
 - \(v = (-1)^s \ M \ 2^E \)
 - \(E = \text{Exp} - \text{Bias} \)

\[
\begin{array}{ccc}
0 & 10001100 & 1101101101101000000000000000 \\
\text{s} & \text{exp} & \text{frac}
\end{array}
\]
Denormalized Values

- **Condition:** \(\text{exp} = 000\ldots0 \)

- **Exponent value:** \(E = 1 - \text{Bias} \) (instead of \(E = 0 - \text{Bias} \))

- **Significand coded with implied leading 0:** \(M = 0.xxx\ldots x_2 \)
 - \(xxx\ldots x \): bits of \(\text{frac} \)

- **Cases**
 - \(\text{exp} = 000\ldots0, \text{frac} = 000\ldots0 \)
 - Represents zero value
 - Note distinct values: +0 and –0 (why?)
 - \(\text{exp} = 000\ldots0, \text{frac} \neq 000\ldots0 \)
 - Numbers closest to 0.0
 - Equispaced
Special Values

- **Condition**: \(\text{exp} = 111\ldots1 \)

- **Case**: \(\text{exp} = 111\ldots1, \text{frac} = 000\ldots0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty \)

- **Case**: \(\text{exp} = 111\ldots1, \text{frac} \neq 000\ldots0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, \infty - \infty, \infty \times 0 \)
Visualization: Floating Point Encodings

-∞ −Normalized −Denorm +Denorm +Normalized +∞

NaN −0 +0 NaN
Tiny Floating Point Example

- **8-bit Floating Point Representation**
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the \texttt{frac}

- **Same general form as IEEE Format**
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>

Denormalized numbers

- closest to zero
- largest denorm
- smallest norm

Normalized numbers

- closest to 1 below
- closest to 1 above
- largest norm

\[v = (-1)^s \cdot M \cdot 2^E \]

\[n: E = \text{Exp} - \text{Bias} \]

\[d: E = 1 - \text{Bias} \]
Distribution of Values

- **6-bit IEEE-like format**
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is \(2^{3-1}-1 = 3\)

- **Notice how the distribution gets denser toward zero.**

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-bits</td>
<td>2-bits</td>
</tr>
</tbody>
</table>

8 values

- Denormalized
- Normalized
- Infinity
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is 3

![Diagram of the 6-bit IEEE-like format with 3 exponent bits and 2 fraction bits. Denormalized, normalized values, and infinity are shown on a number line.](image)
Floating Point in C

- **C Guarantees Two Levels**
 - `float` single precision
 - `double` double precision

- **Conversions/Casting**
 - Casting between `int`, `float`, and `double` changes bit representation
 - `double/float` → `int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - `int` → `double`
 - Exact conversion, as long as `int` has ≤ 53 bit word size
 - `int` → `float`
 - Will round according to rounding mode
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

- `x == (int)(float) x`
- `x == (int)(double) x`
- `f == (float)(double) f`
- `d == (double)(float) d`
- `f == -(-f);`
- `2/3 == 2/3.0`
- `d < 0.0 ⇒ ((d*2) < 0.0)`
- `d > f ⇒ -f > -d`
- `d * d >= 0.0`
- `(d+f)-d == f`

Assume neither `d` nor `f` is NaN
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>(2^{-{23,52}} \times 2^{-{126,1022}})</td>
</tr>
<tr>
<td>- Single</td>
<td></td>
<td></td>
<td>(\approx 1.4 \times 10^{-45})</td>
</tr>
<tr>
<td>- Double</td>
<td></td>
<td></td>
<td>(\approx 4.9 \times 10^{-324})</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>((1.0 - \varepsilon) \times 2^{-{126,1022}})</td>
</tr>
<tr>
<td>- Single</td>
<td></td>
<td></td>
<td>(\approx 1.18 \times 10^{-38})</td>
</tr>
<tr>
<td>- Double</td>
<td></td>
<td></td>
<td>(\approx 2.2 \times 10^{-308})</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td>00...00</td>
<td>(1.0 \times 2^{-{126,1022}})</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>((2.0 - \varepsilon) \times 2^{{127,1023}})</td>
</tr>
<tr>
<td>- Single</td>
<td></td>
<td></td>
<td>(\approx 3.4 \times 10^{38})</td>
</tr>
<tr>
<td>- Double</td>
<td></td>
<td></td>
<td>(\approx 1.8 \times 10^{308})</td>
</tr>
</tbody>
</table>